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Many papers are devoted to the problem of the nonlinear attenuation of 
the shock-waves in a homogeneous medium, for example [ l-4 1 , 

The propagation of shock-waves of small amplitude in an inhomogeneous 
medium was considered by Gubkin [5 I, who applied for this purpose the 
method of integration of the equations along the characteristics. 

Below, the problem of the propagation of shock-waves in a moving 
medium with varying density and temperature is considered under the 
assumption that the shock-wave is weak and the wavelength is much smaller 
than the characteristic dimension of the problem. It seems that nonlinear 
effects in this case may be determined using an approach analogous to the 
one applied by Landau in [ 1 I. Asymptotic formulas for excess pressure at 
the wave-front are given for linear pressure profiles and certain laws of 
variation of the density of a medium. 

In the case of a “weakly varying medium”. simple approximate formulas 
are obtained which allow the excess pressure at the wave-front with 
linear pressure profile to be calculated. 

1. We shall consider the propagation of weak shock-waves in an inhomo- 
geneous medium. We assume that the undisturbed pressure p. density p, the 
velocity of sound a and the velocity of gas motion a (wind velocity) are 
functions of the coordinates. We 
region under consideration 

shall also assume that in the whole 

where hp is the excess pressure in the wave, 1 is the wavelength (in 
what follows we shall consider 1 to be the length of the compression zone 

(1.1) 
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of the wave), H is the characteristic dimension of the problem, i.e. the 
distance in which the parameters of the medium substantially vary, R is 

the radius of curvature of the wave-front. 

From the last inequality (1.1) it follows that cylindrical and spher- 

ical waves in any small region may be considered to be locally Plane. We 
shall introduce the Cartesian coordinate system x, y, z. 

We shall assume that the solutions of the equations of motion in the 
approximation of geometric acoustics are known, i.e. the configuration 
of the trajectories and the variation of the excess pressure hp’ and the 
wavelength 1’ along the ray (primed values mean that the values of the 
corresponding parameters are taken in the approximation of geometrical 
acoustics). 

It is proposed to establish the additional attenuation not accounted 
for by acoustics of a shock wave with a linear pressure profile along an 
arbitrary chosen trajectory i$(z, y, z). 

As the basis of the considerations below will be taken the Properties 
of one-dimensional travelling waves, which are determined by Riemann’s 
solutions of the equations of motion (so-called simple waves; see, for 
example, [ 6 I, Section 94). according to which the translational velocity 
of a point of the wave-profile II is equal to the sum of the local sound 
velocity and the gas velocity in the wave v or, in a slightly different 
form, 

lJ=a+uv 
( 

X+1 a=- cP 
2 

x=- (1.2) 
Cv > 

where the quantity a is given in brackets for an ideal gas: K is the 
ratio of specific heats for constant pressure and constant volume (for 
air a = 1.2). 

For a shock Riemann’s solution loses its validity; however, for waves 
of small amplitude, up to the terms of the second order with respect to 
hp/p, the wave remains simple, and the location of the discontinuity is 
found by the use of a simple rule, described in [ 6 I, Section 95. 

According to (1.2) an additional translation of the profile element 
of the wave which occurs along the trajectory in the direction of the 
normal to the wave-front in the time from t,, to t is determined by the 
expression 

8&u\vdt ., 
to 

where, in first approximation 
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v = Ap' I pa, dt = U,-‘d%; 

II is the so-called ray velocity, equal to 1 an + II 1, where II is a unit 

Ator, directed along the normal to the wave front and d[ is the differ-. 

ential of an arc along the trajectory. We have 

; 

Qzev\ z;+. U,=a 1/ 1+?+(g2 (un= u.n) (1.3) 

Eo 

where t, is the location of an element of the wave-profile at the time t,, 
on the trajectory under study; hereafter we shail denote by t0 the loca- 
tion of the shock-wave for t = t,). 

Note that the wavelength in the approximation of geometric acoustics 
is determined by the expression 

N (t) N (t) N (5) a (E) -!- u, (E) 
l’ ct) = l0 N(t,) 1, = I (to), N = - - N (Eo) - a (El + u, CEO) (1.4) 

Taking into consideration (1.3 ) and (1.4) and repeating, essentially, 
the arguments of Landau [ 6 I, Section 95, we obtain the following ex- 
pressions for the wavelength 1 and the excess pressure at the wave-front 

hp~ (for the wave with linear pressure profile) : 

AP@’ 

ApQ @)= Jfl + tD (E, to) 
(1.6) 

2. Let us investigate the asymptotic behavior of shock-waves in an 
isothermal medium at rest with varying density. In this case the trajec- 
tories will be straight lines, and 

APO 
AP@’ (E) = - 

P 
(S/%0)’ G 

where Y = 0, l/2, 1, corresponding to the case of plane cylindrical and 

spherical waves. Then for (1.6) we obtain 

(APO = AP@’ (%oL PO = P Go)) 

(2.1) 

where 

aApo%o 
m =laao2poy v 
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If \lp increases along the trajectory faster than f’-“, then the 

particular law of attenuation of the intensity of a shock-wave will be 

ApQ, - fi 
E” 

(24 

i.e. the same as in acoustics. 

It is to be noted that to fulfil the condition (1.1) the density must 
not increase along the trajectory faster than exponentially. 

If p = const, then from (2.1) we obtain the asymptotic formulas of 
Landau [ 1 I : 

Ap-& for v=G 

for V = ‘1% (2.3) 

1 

A’ - E Vln (E/E*) 
for v=l 

If dp along a trajectory decreases (or increases, but not faster than 
c’-“). then formally it is not difficult to obtain the asymptotic laws 
of the attenuation of a shock-wave in this case also. However, the re- 
quirement that the inequalities (1.11 be fulfilled imposes a substantial 
limitation upon the laws of density variation, for which an asymptotic 
representation for hp~ is possible within the limits of the approxima- 
tion considered. 

In the case of d p - ~c-v, where -1 < c < 1, i.e. if p decreases not 
faster than [- ‘, then in the limit 

1-c I-tV 

l-E 
-!i- 

-- 

, Ap Q, 
- P%E 2 (2.4) 

In this case, if Apig is represented in the form 

.r- 
Apg, - AP +V g P(P) 

where A p, is the excess pressure at the wave-front propagating in a 
homogeneous medium (see Formulas (2.3)), then for c + 00 the following 
equations are valid: 

P (P) = (P / POP for V=0andV=1/2 

P (P) = (P / PO)“4 m for v=l 
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The function p(p) characterizes the nonlinear attenuation of the 
shock-wave intensity, determined by the variation of the density of the n 
medium. 

3. We shall investigate a medium in which all the hydrodynamic para- 
meters in the unperturbed condition depend only on one coordinate. for 
example Z. Assume that in the entire region under consideration 

In that case, up to terms of order E, the quantity hp’ along a tra- 
jectory may be represented in the form 

(3.1) 

where the index 0 denotes the values of the flow parameters in some 
chosen cross-section 0 of an infinitely narrow stream tube constructed 
around the given trajectory and s is the area of cross-section of such a 
stream tube. Formula (3.1) may be proved in the following manner. From 
13 1 we have 

Apa’= L 
cq/f;1/: 

where in the case under consideration 

(integration is along the trajectory). Since div m/u = 0 and dt = d&U.. 
then UP to terms of order E we have 

(u + un) div (II f +) - u, div n+ ‘s] d5) 

Note that Formula (3.1) up to terms of order E coincides with the 
formula for b.p~ given in [ 7 ] and obtained from the condition of con- 
servation of average energy in geometric acoustics for stationary pro- 
cesses. The divergence of the stream tube s/s,, is not dif,ficult to obtain 
using the law of deflection of a ray in an inhomogeneous medium, as de- 
veloped by Chibisov [ 8 I. 

For linear variation of sound velocity in the absence of wind, we 
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have* for a wave propagating from a spatial point source a first approxi- 

mation \/ s * eda, so that 

I/ ic APg’ 
5 

AP@'= $ po, Ap@ = Vl+nzX(E,Eo) (3.2) 

As is known [ 4 I, for c$/ [ > 1.06 for 

Ap, = 0.57 p, m = 2.75, 
F. 

I, 
(E, is the energy 

explosion) 
of 

the results. obtained from the formula of Landau [ 1 1 , which is Formula 

(3.2) when p and a are constants, coincide with the results of numerical 
calculation for a point explosion when the back pressure is taken into 
account [ lo-12 ] . 

Therefore, for an approximate calculation of APQ, in a weakly varying 

medium with a constant gradient of sound velocity for 6 >> to, the 
following formula may be suggested: 

1 

PO 1/l +2.75X(Eto) 

1. 

2. 

3. 

4. 

5. 
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